Exercise 28

Plot the gradient vector field of f together with a contour map of f. Explain how they are related to each other.

$$
f(x, y)=\cos x-2 \sin y
$$

Solution

Calculate the gradient and call it \mathbf{F}.

$$
\begin{aligned}
\mathbf{F} & =\nabla f \\
& =\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\rangle f \\
& =\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \\
& =\left\langle\frac{\partial}{\partial x}(\cos x-2 \sin y), \frac{\partial}{\partial y}(\cos x-2 \sin y)\right\rangle \\
& =\langle(-\sin x),(-2 \cos y)\rangle
\end{aligned}
$$

The vector field of this gradient is superimposed on a contour plot of $f(x, y)$. Notice that the vectors are perpendicular to each of the contours, pointing in the direction of greatest increase.

